
AP® COMPUTER SCIENCE A
2009 SCORING GUIDELINES

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 1: Number Cube

Part (a) getCubeTosses 4 points

 +1 constructs array
 +1/2 constructs an array of type int or size numTosses
 +1/2 constructs an array of type int and size numTosses

+2 1/2 processes tosses
 +1 repeats execution of statements numTosses times
 +1 tosses cube in context of iteration
 +1/2 collects results of tosses

+1/2 returns array of generated results

Part (b) getLongestRun 5 points

 +1 iterates over values
 +1/2 accesses element of values in context of iteration
 +1/2 accesses all elements of values, no out-of-bounds access potential

 +1 determines existence of run of consecutive elements

+1/2 comparison involving an element of values
+1/2 comparison of consecutive elements of values

 +1 always determines length of at least one run of consecutive elements

 +1 identifies maximum length run based on all runs

 +1 return value
 +1/2 returns starting index of identified maximum length run
 +1/2 returns -1 if no run identified

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2009 SCORING COMMENTARY

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 1

Overview

This question focused on the array data structure, its construction and traversal, the application of basic
algorithms, and method invocation for a specified object. Students were provided with the framework of a
helper class, NumberCube, that represented a conventional six-sided die (a cube with the numbers 1 to
6 on its sides). They were asked to implement two static methods of unspecified classes. In part (a)
students were required to implement the getCubeTosses method that returns an array of values
obtained by invoking the toss method of a NumberCube object. This could be accomplished by
creating an integer array of the specified length, then assigning its values to those obtained by invoking
toss on the supplied NumberCube object. In part (b) students were required to implement the
getLongestRun method that identifies and returns the starting index of the longest sequence of two or
more consecutively repeated values in an array. This involved traversing a supplied array of integer values
to locate such sequences.

Sample: A1a
Score: 9

The solution presented for part (a) earned all 4 points. It is canonical except for the fact that the for loop
iterates numTosses times by using arr.length.

The solution presented for part (b) earned all 5 points. The iteration over values begins at 1
(runIndex is initialized to 0 for the first element). The expression values[i] ==
values[runIndex] compares consecutive elements because i and runIndex are initially 1 and 0,
respectively. The length of the current run is stored in runLength, which is appropriately initialized,
incremented, and reset. The check for a maximum length run immediately follows runLength++.
Consequently, this check is always executed when a new (possibly longer) run is processed.

The variable runIndex is used to keep track of the beginning index of the current run. It is initialized to
0 and reset to i, the beginning of the next potential run, when the current run ends. The value of
runIndex is assigned to maxRunIndex when a new maximum length run is identified and is returned
after the for loop exits. The solution returns −1 if there is no run because maxRunIndex is initialized
to −1 and is unchanged when no run is identified.

Sample: A1b
Score: 7

The solution presented for part (a) earned all 4 points. The student chooses an alternate yet allowable form
of the array declaration int numVals[] instead of the more common int[] numVals. Also, new
int(numTosses) received full credit because the distinction between [] and () is not a penalized
error.

The solution presented for part (b) earned 3 out of 5 possible points. It does not access all elements of
values because the i < values.length loop test allows values[i+1] to be out-of-bounds.
A run length of 1 is calculated correctly because run is initialized, properly incremented, and reset at the
end of a run.

AP® COMPUTER SCIENCE A
2009 SCORING COMMENTARY

© 2009 The College Board. All rights reserved.
Visit the College Board on the Web: www.collegeboard.com.

Question 1 (continued)

A check for the maximum length run is found in the else clause, and as a result the maximum length run
is not identified until i advances beyond the current run and values[i] != values[i+1].
Consequently, the longest run fails to be identified when it occurs at the end of values. The second for
loop is used to locate the starting index of the maximum length run. This loop also fails to find the maximum
length run because values[j+1] can be out-of-bounds. Additionally, run is not reinitialized either
before the loop or inside the loop at the end of a run.

The value j-run is used to calculate the starting index of the maximum length run. This would be
incorrect even if run was initialized and reinitialized to 0 because j-run would be one less than the
correct value. Also, the test run > 1 should instead be run > 0 because the value of run is always
one less than the actual run length. The solution returns −1 if there is no run because startRun is
initialized to −1 and is unchanged when no run is identified.

Sample: A1c
Score: 1

The solution presented for part (a) earned no points. There is an attempt to construct an ArrayList using
the keyword new, but none of the other required elements is present to properly construct the array. The
loop for processing tosses fails to initialize i, toss the cube, or collect results into values. Additionally,
the code incorrectly returns values[i] instead of values.

The solution presented for part (b) earned 1 out of 5 points. The for loop test condition of
i < values.length −1 would be correct if values[i+1] were in the loop body. However,
values[i] never accesses the last element of values. Also, consecutive elements of values are not
compared.

There is no attempt to determine the existence of a run or the maximum length run, and so these points were
not earned. The “returns starting index of identified maximum length run” ½ point was not earned. Finally,
since return -1 is not based on the nonexistence of a run, the corresponding ½ point was not earned.

